首页>手册>软件使用帮助>AI绘画软件Stable Diffusion模型/Lora/VAE文件存放位置

AI绘画软件Stable Diffusion模型/Lora/VAE文件存放位置

软件安装教程

AI绘画软件Stable Diffusion模型/Lora/VAE文件存放位置插图
AI绘画软件Stable Diffusion模型/Lora/VAE文件存放位置插图

AI绘画软件Stable Diffusion+WebUI+Chilloutmix/ControlNet模型(一键安装包)支持WIN/MAC

模型下载说明(下载模型后输入对应参数即可生成)

建议直接去civitai.com找模型,如果无法找到可以在幕后模型区找也可以去www.4b3.com

下载好后放入对应的文件夹。进入127.0.0.1:7680 左上角刷新即可看到新的模型。

 

模型种类

大模型

大模型特指标准的latent-diffusion模型。拥有完整的TextEncoderU-NetVAE

由于想要训练一个大模型非常困难,需要极高的显卡算力,所以更多的人选择去训练小型模型。

CKPT

CKPT格式的全称为CheckPoint(检查点),完整模型的常见格式,模型体积较大,一般单个模型的大小在7GB左右。

文件位置:该模型一般放置在*\stable-diffusion-webui\models\Stable-diffusion目录内。

小模型

小模型一般都是截取大模型的某一特定部分,虽然不如大模型能力那样完整,但是小而精,因为训练的方向各为明确,所以在生成特定内容的情况下,效果更佳。

常见微调模型:Textual inversion (Embedding)HypernetworkVAELoRA等,下面一一进行介绍。

VAE

全称:VAE全称Variational autoencoder。变分自编码器,负责将潜空间的数据转换为正常图像。

后缀格式:后缀一般为.pt格式。

功能描述:类似于滤镜一样的东西,他会影响出图的画面的色彩和某些极其微小的细节。大模型本身里面自带 VAE ,但是并不是所有大模型都适合使用VAE,VAE最好搭配指定的模型,避免出现反效果,降低生成质量。

使用方法:设置 -> Stable-Diffusion -> 模型的 VAE (SD VAE),在该选项框内选择VAE模型。

文件位置:该模型一般放置在*\stable-diffusion-webui\models\VAE目录内。

AI绘画软件Stable Diffusion模型/Lora/VAE文件存放位置插图2

Embedding

常见格式为ptpngwebp格式,文件体积一般只有几KB。

风格模型,即只针对一个风格或一个主题,并将其作为一个模块在生成画作时使用对应TAG在Prompt进行调用。

使用方法:例如本站用数百张海绵宝宝训练了一个Embedding模型,然后将该模型命名为HMBaby,在使用AI绘图时加载名称为HMBaby的Embedding模型,在使用Promat时加入HMBaby的Tag关键字,SD将会自动调用该模型参与AI创作。

文件位置:该模型一般放置在*\stable-diffusion-webui\embeddings目录内。

Hypernetwork

一般为.pt后缀格式,大小一般在几十兆左右。这种模型的可自定义的参数非常之多。

使用方法:使用方法:在SD的文生图或图生图界面内的生成按钮下,可以看到一个红色的图标,该图标名为Show extra networks(显示额外网络),点击该红色图标将会在本页弹出一个面板,在该面板中可以看到Hypernetwork选项卡

文件位置:该模型一般放置在*\stable-diffusion-webui\models\hypernetworks目录内。

LoRA

LoRA的模型分两种,一种是基础模型,一种是变体。

目前最新版本的Stable-diffusion-WebUI原生支持Lora模型库,非常方便使用。

使用方法:在SD的文生图或图生图界面内的生成按钮下,可以看到一个红色的图标,该图标名为Show extra networks(显示额外网络),点击该红色图标将会在本页弹出一个面板,在该面板中可以看到Lora选项卡,在该选项卡中可以自由选择Lora模型,点击想要使用的模型将会自动在Prompt文本框中插入该Lora模型的Tag名称。

AI绘画软件Stable Diffusion模型/Lora/VAE文件存放位置插图3

基础模型

名称一般为chilloutmix*,后缀可能为safetensors或CKPT。

基础模型存放位置:*\stable-diffusion-webui\models\Stable-diffusion目录内。

变体模型

变体模型存放位置:*\stable-diffusion-webui\models\Lora目录内。

是放在extensions下的,sd-webui-additional-networks文件夹下的models文件夹里的lora!!

不是主文件夹下的models,别放错了!!!

模型后缀解析

格式描述
.ckptPytorch的标准模型保存格式,容易遭受Pickle反序列化攻击。
.ptPytorch的标准模型保存格式,容易遭受Pickle反序列化攻击。
.pthPytorch的标准模型保存格式,容易遭受Pickle反序列化攻击。
.safetensorssafetensors格式可与Pytorch的模型相互格式转换,内容数据无区别。
其它webui 特殊模型保存方法:PNG、WEBP图片格式。

Safetensors格式

  • Safetensors格式所生成的内容与ckpt等格式完全一致(包括NFSW)。
  • Safetensors格式拥有更高的安全性,
  • Safetensors比ckpt格式加载速度更快
  • 该格式必须在2023年之后的Stable Diffusion内才可以使用,在此之间的SD版本内使用将无法识别。
  • Safetensors格式由Huggingface推出,将会逐渐取代ckpt、pt、pth等格式,使用方法上与其它格式完全一致。

Pickle反序列化攻击

可以将字节流转换为一个对象,但是当我们程序接受任意输入时,如果用户的输入包含一些恶意的序列化数据,然后这些数据在服务器上被反序列化,服务器是在将用户的输入转换为一个对象,之后服务器就会被任意代码执行。

模型训练

Embedding (Textual inversion)

可训练:画风√ 人物√ | 推荐训练:人物

配置要求:显存6GB以上。

训练速度:中等 | 训练难度:中等

综合评价:☆☆☆

Hypernetwork

可训练:画风√ 人物√ | 推荐训练:画风

配置要求:显存6GB以上。

训练速度:中等 | 训练难度:难

综合评价:☆☆

评价:非常强大的一种模型,但是想训练好很难,不推荐训练。

LoRA

可训练:画风? 人物√  概念√ | 推荐训练:人物

配置要求:显存8GB以上。

训练速度:快 | 训练难度:简单

综合评价:☆☆☆☆

评价:非常好训练 好出效果的人物训练,配置要求低,图要求少。

备注:LoRA 本身也应该归类到 Dreambooth,但是这里还是分开讲。

Dreambooth / Native Train

可训练:画风√ 人物√ 概念√ | 推荐训练:Dreambooth 推荐人物,Native Train 推荐画风

配置要求:显存12GB以上。

训练速度:慢 | 训练难度:可以简单可以很难

综合评价:☆☆☆☆☆

评价:微调大模型,非常强大的训练方式,但是使用上会不那么灵活,推荐训练画风用,人物使用 LoRA 训练。

DreamArtist

显存要求6GB(4GB应该也可以),只需要(也只能)使用一张图完成训练,一般用于训练人物(画风没法抓住主次),优点是训练要求极低,成功率高,缺点是容易过拟合,并且不像Embedding可以跨模型应用,这个训练时使用什么模型应用时就要用什么,哪怕调一下CLIP参数生成结果都会完全跑飞。推荐每250步保存模型,后期用X/Y图脚本进行挑选。

模型后缀

仓库内一般存在多个模型文件,文件名后缀各不相同,这里简单介绍下文件名常见后缀及其含义:

ControlNet

ControlNet比之前的img2img要更加的精准和有效,可以直接提取画面的构图,人物的姿势和画
面的深度信息等等。有了它的帮助,就不用频繁的用提示词来碰运气,抽卡式的创作了。

instruct-pix2pix

在 stable-diffusion-webui 中的img2img专用模型 自然语言指导图像编辑 生成速度极快 ,仅需要几秒的时间。

FP16、FP32

代表着精度不同,精度越高所需显存越大,效果也会有所提升。

512|768

代表着默认训练分辨率时512X512还是768X768,理论上默认分辨率高生成效果也会相应更好。

inpaint

代表着是专门为imgtoimg中的inpaint功能训练的模型,在做inpaint时效果会相对来说较好。

depth

代表此模型是能包含处理图片深度信息并进行inpainting和img2img的

EMA

模型文件名中带EMA一般意味着这是个用来继续训练的模型,文件大小相对较大

与之相比,正常的、大小相当较小的那个模型文件是为了做推理生成的

对于那些有兴趣真正理解发生了什么的人来说,应该使用EMA模型来进行推理

小模型实际上有EMA权重。而大模型是一个 “完整版”,既有EMA权重,也有标准权重。因此,如果你想训练这个模型,你应该加载完整的模型,并使用use_ema=False。

EMA权重

就像你作为一个学生在接受训练时,也许你会在最后一次考试表现较差,或者决定作弊并记住答案。所以一般来说,通过使用考试分数的平均值,你可以更好地了解到学生的表现,

由于你不关心幼儿园时的分数,如果你只考虑去年的分数(即只用一组最近的实际数据值来预测),你会得到MA(moving average 移动平均数). 而如果你保留整个历史,但给最近的分数以更大的权重,则会得到EMA(exponential moving average 指数移动平均数)。

这对具有不稳定训练动态的GANs来说是一个非常重要的技巧,但对扩散模型来说,它其实并不是那么重要。

VAE

VAE模型文件并不能和正常模型文件一样独立完成图片生成。

8 条回复 A文章作者 M管理员
  1. OpenBI

    很好的帮助

  2. iamxiong

    感谢分享,对新手太有用了

  3. jxlsfl

    很好的帮助

  4. 清风96734

    帮助很大

  5. YOUCAN

    新手,全面,详细,谢谢作恶者,看完之后受益匪浅,

  6. 卜哥

    不错 感谢分享

  7. 汐105116

    很好 很好很好的帮助

个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索